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Single-molecule magnets that contain one spin centre may represent the smallest possible unit for spin-based
computational devices. Such applications, however, require the realization of molecules with a substantial energy barrier
for spin inversion, achieved through a large axial magnetic anisotropy. Recently, significant progress has been made in this
regard by using lanthanide centres such as terbium(III) and dysprosium(III), whose anisotropy can lead to extremely high
relaxation barriers. We contend that similar effects should be achievable with transition metals by maintaining a low
coordination number to restrict the magnitude of the d-orbital ligand-field splitting energy (which tends to hinder the
development of large anisotropies). Herein we report the first two-coordinate complex of iron(I), [Fe(C(SiMe3)3)2]2, for
which alternating current magnetic susceptibility measurements reveal slow magnetic relaxation below 29 K in a zero
applied direct-current field. This S 5 3

2 complex exhibits an effective spin-reversal barrier of Ueff 5 226(4) cm21, the largest
yet observed for a single-molecule magnet based on a transition metal, and displays magnetic blocking below 4.5 K.

N
early a decade ago it was discovered that the mononuclear
lanthanide complexes [LnPc2]2 (H2Pc¼ phthalocyanine;
Ln¼ Tb, Dy) possessed directionally bistable magnetic

moments1. In these molecules, the spin and orbital angular
momenta couple strongly to generate inherent directionality for
the molecular magnetic moments. As a result of these highly aniso-
tropic spin–orbit coupled ground states and the relaxation barriers
imposed by the axial ligand fields2, the magnetic moments of these
molecules reorient only slowly on removal from a magnetizing field.
When the relaxation time is sufficiently long, molecular magnetic
hysteresis is observed, similar to that of classical magnets, but
here owing to the moment of a single metal ion3. Significantly,
the effective relaxation barriers for such species, determined by
spectral and/or magnetic susceptibility measurements, can be as
high as Ueff¼ 641 cm21 (refs 2–6), which surpasses by an order of
magnitude that obtained for the original single-molecule magnet,
Mn12O12(O2CCH3)16(H2O)4 (refs 7,8) and other clusters that
contain transition metals9,10. Thus, f-element complexes appear to
present the best opportunities for attaining the high relaxation
barriers required for potential applications of single-molecule
magnets in information storage11, quantum computation11–14

and spintronics15.
The investigation of the magnetic anisotropies of systems based

on transition metals is of renewed interest as part of a larger
general effort to find magnetic alternatives to the f-block elements.
However, compared to lanthanides and actinides, mononuclear
complexes of transition metals appear to be poorly suited to achiev-
ing high relaxation barriers because of their smaller magnetic
moments and, at least for first-row transition-metal ions, lower
spin–orbit coupling (SOC) constants. In addition, the larger
ligand-field splitting energies of the transition-metal d orbitals can
be expected to suppress the orbital contributions to the magnetism
required to develop magnetic anisotropy. In one manifestation of
this effect, first-order orbital angular momentum can be quenched
as the result of a Jahn–Teller distortion16. In another, the second-
order contribution to the magnetic anisotropy (that is, zero-field
splitting) is diminished because of the large energy separation

between ground and excited electronic states, which reduces the
degree of mixing. Importantly, these ligand-field effects can be over-
come substantially by enforcing a low coordination number at the
transition-metal centre, which causes the d orbitals to fall within a
narrow energy range, similar to the situation found for the 4f orbi-
tals of a lanthanide complex. Indeed, four-coordinate trigonal pyr-
amidal complexes of iron(II) with an S¼ 2 ground state were shown
to behave as single-molecule magnets with thermal relaxation
barriers as high as 65 cm21 (refs 17,18). In these and a number of
other mononuclear transition-metal complexes19–22, however, the
observation of slow magnetic relaxation requires a d.c. field bias
to suppress fast magnetization reversal through quantum tunnel-
ling. Alternatively, tunnelling of the magnetic moment caused by
mixing of the ground +MS levels will be minimized in half-
integer spin systems, as posited by Kramers23. Thus, such systems
should not require a d.c. field bias to display slow magnetic relax-
ation. As initial examples, recently the S¼ 3

2 complexes in
(Ph4P)2[Co(SPh)4] and (PNP)FeCl2 (PNP2¼N[2-P(CHMe2)2-
4-methylphenyl]2 anion) were shown to behave as single-
molecule magnets in the absence of an applied d.c. field, exhibiting
Ueff¼ 21(1) and 34(2) cm21, respectively24,25.

A linear two-coordinate geometry presents perhaps the best
opportunity for mitigating ligand-field effects in transition-metal
complexes and creating a large anisotropy barrier26. Here, a
high-spin d6-electron configuration can be expected to provide
unquenched orbital angular momentum, which maximizes the
magnitude of the magnetic moment and the ligands define an
axis for its preferential alignment. Recently, we and others studied
linear, two-coordinate complexes of iron(II), which possess S¼ 2
ground states under the influence of an unquenched orbital
angular momentum27–31. These investigations revealed that very
large spin-reversal barriers, as high as 181 cm21, could be observed
by a.c. magnetic susceptibility measurements, albeit only in the
presence of an applied d.c. field. To determine if such large barriers
could be attained in the absence of an applied field, again taking
advantage of Kramers’ theorem, we chose to investigate the mag-
netic properties of two-coordinate complexes with S¼ 3
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states. Here we report the first two-coordinate complex of iron(I),
[Fe(C(SiMe3)3)2]2, that, indeed, possesses a highly anisotropic
S¼ 3

2 spin state and gives a record high barrier for magnetic relax-
ation in a transition-metal complex under a zero applied field.

Results and discussion
The viability of reducing the linear two-coordinate complex
Fe(C(SiMe3)3)2 by one electron was first recognized on measuring
its cyclic voltammogram in difluorobenzene (Supplementary
Fig. S1). Here, a reversible reduction event that corresponded to
the [Fe(C(SiMe3)3)2]0/12 couple is apparent at E1/2¼21.82 V
versus the [FeCp2]1þ/0 (Cp2¼ cyclopentadienyl anion) couple
with a peak-to-peak separation of 78 mV. In view of this result,
KC8 was employed to reduce the complex, which, on addition of
2.2.2-cryptand (crypt-222), enabled isolation of the yellow–green
compound [K(crypt-222)][Fe(C(SiMe3)3)2] (1). X-ray diffraction
analysis of a single crystal of 1 revealed the linear two-coordinate
structure of [Fe(C(SiMe3)3)2]2, as depicted in Fig. 1 (see also
Supplementary Fig. S2). Here, the C–Fe–C angle of 179.2(2)8 is
almost perfectly linear, which places 1 among a small family
of homoleptic two-coordinate metal(I) complexes of the
[C(SiMe3)3]2 ligand32–35. Notably, the SiMe3 groups are nearly
eclipsed, in contrast to the structure of Fe(C(SiMe3)3)2 in which
they are staggered36. The Fe–C distances of 2.058(4) and 2.062(4) Å
are only marginally longer than the distance of 2.051(1) Å in
Fe(C(SiMe3)3)2 (ref. 36).

Compound 1 was characterized by 57Fe Mössbauer spectroscopy,
a technique that is highly sensitive to the oxidation state and chemi-
cal environment of the iron centre. Although the structures of the
linear complexes in Fe(C(SiMe3)3)2 and 1 are very similar, different
Mössbauer parameters are observed for the two compounds, in
agreement with a change in the oxidation state of the iron on reac-
tion with KC8. The spectrum of Fe(C(SiMe3)3)2 at 295 K consists of
a quadrupole doublet broadened by paramagnetic relaxation and
characterized by an isomer shift of d¼ 0.39(1) mm s21, a quadru-
pole splitting of DEQ¼21.08(1) mm s21 and an internal hyperfine
field of Hint¼ 152 T (Supplementary Fig. S3)27. For 1, an asym-
metric quadrupole doublet is also observed at 295 K (Fig. 2),
which indicates the onset of slow paramagnetic relaxation on
the Mössbauer timescale. At 5 K, the spectrum has a sharp sextet,

and a fit yields Hint¼ 63.97(1) T. To account for the paramagnetic
relaxation, the 295 K spectrum was fit with a relaxation profile
with Hint¼ 63.97(1) T, which yielded d¼ 0.278(4) mm s21,
DEQ¼22.520(7) mm s21 and a magnetic relaxation time
t¼ 5.1(6) × 10211 s. These parameters are consistent with a
change in oxidation state for the two-coordinate iron(I) ion and fur-
thermore mirror similar trends observed in three-coordinate37,38

and four-coordinate39 iron(II/I) systems.
A ligand-field analysis of the results of ab initio calculations

performed on 1 based on the methods described previously31 pro-
vided the d-orbital splitting depicted in Fig. 1c (see also the
Supplementary Information). The calculations demonstrate that
the combination of a low coordination number and a low oxidation
state generates a very weak ligand field. This situation has important
consequences for the electronic structure and magnetic properties of
1: (1) a very strong 4s–3dz2 mixing is induced and (2) an almost
unquenched orbital momentum arises. Together, these two features
are probably the origin of the relatively low d and large Hint observed
in the Mössbauer spectra. SOC leads to a splitting of the 4E ground
state of 1 into four doublets that are best characterized by the
quantum number MJ , where J refers to the total angular momentum
of the system. In order of increasing energy, these doublets corre-
spond to the quantum numbers MJ¼+7

2, +5
2, +3

2 and +1
2

(Supplementary Table S3). The energy spacings between these
doublets are approximately 2

3z, where z is the effective SOC constant
(z¼ 361 cm21 for a free iron(I) ion).

The variable-temperature d.c. magnetic susceptibility data for 1
collected under a 1 kOe applied d.c. field reveal non-Curie law
behaviour, consistent with a highly anisotropic magnetic moment
(Fig. 3). At 300 K, xMT¼ 3.39 cm3 K mol21, lower than the
4.80 cm3 K mol21 observed for Fe(C(SiMe3)3)2, yet significantly
higher than the value of 1.875 cm3 K mol21 expected for an
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Figure 2 | Mössbauer spectra for crystalline 1 measured at 295 and 5 K.

a, Data collected at 295 K. The black line (mostly overlaid by the red line

and data points) represents the sum of two fitted components. The major

component, red, corresponds to 1 and the second component, green,

corresponds to a minor unidentified, oxidized impurity. The red

component is a result of a fit with a relaxation profile calculated for a fixed

experimental linewidth of 0.314 mm s21 and with d¼0.278(4) mm s21,

DEQ¼22.520(7) mm s21, Hint¼ 63.97(1) T, t¼ 5.1(6) × 10211 s and

90.0(5) % area. b, Data collected at 5 K. The red line corresponds to a fit

with d¼0.410(2) mm s21, DEQ¼22.557(5) mm s21, Hint¼ 63.97(1) T and

G¼0.314(2) mm s21.
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Figure 1 | Preparation, structure and d-orbital splitting of the linear iron(I)

complex [Fe(C(SiMe3)3)2]2. a, General reaction scheme for the synthesis

of 1. b, Structure of the [Fe(C(SiMe3)3)2]2 anion, as observed in the crystal

structure of 1. Orange, cyan and grey spheres represent Fe, Si and C,

respectively; H atoms are omitted for clarity. Selected interatomic distances

(Å) and angles (8) for 1: Fe–C¼ 2.062(4), 2.058(4), Fe...Fe¼ 9.211(3);

C–Fe–C¼ 179.2(2). c, Energies of the 3d orbitals extracted from an ab initio

computational analysis of [Fe(C(SiMe3)3)2]2.
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isotropic S¼ 3
2 metal centre. As the temperature is lowered, xMT

increases to a maximum of 3.64 cm3 K mol21 at 125 K and
then gradually decreases to 3.21 cm3 K mol21 at 5.5 K before it
drops precipitously to 0.18 cm3 K mol21 at 2 K. The xMT data
above 5.5 K are typical for transition-metal complexes with
first-order orbital angular momenta. Further, there is close
agreement between the experimental data and the simulations on
the basis of the electronic structure results (Fig. 3 and
Supplementary Fig. S4)30,31.

The large energy splittings of the MJ sublevels obtained from the
ab initio calculations indicate that [Fe(C(SiMe3)3)2]2 should behave
as a single-molecule magnet with a substantial energy barrier. As a
direct probe of the relaxation dynamics, a.c. magnetic susceptibility
measurements were performed on a microcrystalline sample of
1. Variable-frequency, variable-temperature in-phase (x ′

M) and
out-of-phase (x ′′

M) a.c. magnetic susceptibility data were collected
under a 4 Oe a.c. field at frequencies (n) of 0.1 to 1,488 Hz from
9 to 29 K at a zero applied d.c. field. As shown in Fig. 4, the
maximum in the x ′′

M versus n plot shifts to higher frequencies
with increasing temperature until it moves beyond the high-
frequency limit of the instrument at 29 K. At a given temperature,
the n at which a maximum occurs in x ′′

M corresponds to
n¼ (2pt)21. Thermally activated spin-reversal40 yields an exponen-
tial dependence of t on temperature: t¼ t0exp(Ueff/kBT), where t0
is the attempt time, Ueff is the effective spin-reversal barrier and kB is
the Boltzmann constant. The resulting Arrhenius plot for 1 reveals a
linear set of data from 20 to 29 K, which indicates dominant spin
relaxation through an Orbach mechanism (see Fig. 4). A linear fit
to this regime yields Ueff¼ 226(4) cm21 (325(6) K) and t0¼
1.3(3) × 1029 s. The former value is the largest relaxation barrier
yet reported for single-molecule magnets that contain either one
(181 cm21)30 or multiple transition-metal centres (67 cm21)10,
although t0 is within the range of 1027 to 10210 s expected for a
molecular species3. The value of Ueff is close to the calculated
energy gap of 210 cm21 between the ground MJ¼

7
2 pair and

the first excited doublet MJ¼
5
2, which suggests that the magnetic

relaxation proceeds via this latter state. Below 20 K, t deviates
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from an exponential temperature dependence, indicating the emer-
gence of tunnelling relaxation processes that short cut the
energy barrier.

A nearly discontinuous decrease in xMT at low temperature, as
apparent in Fig. 3, can signify the blocking of the magnetic
moments by a spin-reversal barrier. In such a case, a difference
will be apparent in magnetic susceptibility data collected on
cooling the sample with or without an applied d.c. field. Indeed,
such a difference is observed for 1 below 4.5 K (see inset to Fig 3),
which indicates that the magnetic moments of 1 at these low
temperatures are blocked from reorientation on application of a
1 kOe d.c. field. This result further suggests that magnetic hysteresis
should be apparent at these temperatures. Consistently, hysteresis is
observed for H = 0 Oe, as demonstrated for a microcrystalline
sample of 1 by variable-field magnetization data collected from
1.8 to 6.5 K under applied fields of up to 2 T (Fig. 5). At
zero field, however, the hysteresis loops collected at an average
sweep rate of 50 Oe s21 suddenly close to give a waist-restricted
shape. This feature results from the presence of tunnelling pathways
for the magnetic relaxation, which, as indicated by the
relaxation times obtained from the a.c. susceptibility data (Fig. 4),
can occur at zero field on a timescale faster than the
magnetic measurement.

Among several possibilities41, intermolecular dipolar interactions
have been implicated as facilitating tunnelling in mononuclear
transition metal24, lanthanide5,42,43 and actinide43,44 single-molecule
magnets. To probe this possibility, magnetic measurements were
performed on frozen solutions of 1 in 2-methyltetrahydrofuran.
The resulting a.c. magnetic susceptibility data reveal slowly relaxing
magnetic moments completely analogous to the data obtained for
microcrystalline samples (Supplementary Fig. S6), which offers
proof of the molecular nature of the slow magnetization dynamics.
Indeed, above 8 K the temperature dependence of t indicates a
relaxation barrier for [Fe(C(SiMe3)3)2]2 in frozen solution that
is identical to that observed in the crystals. For a 4 mM solution
of 1—the lowest concentration for which reliable data could be

obtained—the relaxation times at low temperature are, indeed,
somewhat slower than those in the crystals, by as much as a factor
of two at 10 K. There is, however, still a significant deviation from
strict Arrhenius behaviour at these low temperatures, which indi-
cates that dipolar interactions are not the sole facilitators of tunnel-
ling. Geometric distortions in solution could also be a factor, as
deviations from strict axial symmetry can induce mixing of the
ground MJ¼+

7
2 levels and enable tunnelling. To a lesser extent,

such an effect may also be operative in the crystalline phase given
the slight deviation from linearity associated with the apparent
C–Fe–C angle of 179.2(2)8 and possible Renner–Teller vibronic
activity reflected by the anisotropic thermal ellipsoids of the
iron(I) ion. Magnetization data collected on the frozen solutions
of 1 display waist-restricted hysteresis loops similar to those col-
lected for the crystalline phase (Supplementary Fig. S7). In this
case, however, the loops remained slightly open at zero field, pre-
sumably because of the increased relaxation times observed on elim-
ination of dipolar effects.

Outlook
As exemplified with the linear iron(I) complex [Fe(C(SiMe3)3)2]2

(Ueff¼ 226 cm21), the foregoing results demonstrate that a two-
coordinate transition-metal complex with an odd electron count
can behave as a single-molecule magnet with an extremely high
spin-reversal barrier in a zero applied field. Importantly, the
axial ligand field imposed at the transition-metal centre directs
the ion towards a large magnetic anisotropy, which leads to relax-
ation properties akin to those observed for lanthanide complexes,
and suggests that low-coordinate transition-metal centres could
potentially serve as replacements for lanthanides in hard perma-
nent magnets. Future efforts will explore the effects of modifying
the ligand field in related linear S¼ 3

2 complexes, with particular
emphasis on further enhancing magnetic anisotropy by bringing
the dz2 orbital lower in energy and ensuring minimal quenching
of the orbital angular momentum. In addition, we will investigate
the possibility of mitigating tunnelling pathways by engaging such
metal centres in strong magnetic exchange interactions that create
higher spin ground states, as recently demonstrated for lanthanide
systems45,46.

Methods
A solution of Fe(C(SiMe3)3)2 (0.10 g, 0.19 mmol) in 2 ml of tetrahydrofuran (THF)
was added to a slurry of KC8 (26 mg, 0.19 mmol) in 2 ml of THF. On stirring
vigorously for two hours, the solution changed from a deep-red to a bright yellow–
orange colour. The solution was filtered through diatomaceous earth (Celite 545),
and crypt-222 (74 mg, 0.20 mmol) was added. The solvent was removed under
reduced pressure to afford a crude product, which was washed with 10 ml of hexanes
to remove unreacted Fe(C(SiMe3)3)2, dried under nitrogen flow and dissolved in
100 ml of iPr2O. Hexanes were layered on top of the solution, which led to the
formation of bright yellow–green block-shaped crystals of 1 (65 mg, 49%).
Electrospray ionization mass spectroscopy (ESI/MS) (m/z): calculated for
[Fe(C(SiMe3)3)2]2, 518.219; found, 518.217. Ultraviolet–visible spectroscopy
(2-MeTHF): lmax (nm) (1M (M21 cm21)) 845 (1,456), 723 (3,270), 596 (1,023),
417 (7,040). Infrared (Nujol) (cm21): 2,942(m), 2,922(w), 2,885(m), 2,814(w),
1,477(m), 1,459(m), 1,445(m), 1,354(s), 1,296(s), 1,259(w), 1,241(vs), 1,230(w),
1,174(w), 1,133(s), 1,103(vs), 1,078(s), 1,058(w), 1,029(w), 950(s), 932(s), 865(vs),
824(vs), 770(s), 754(m), 665(s), 644(vs), 606(s), 591(s), 566(w), 523(m). Analytically
calculated for C38H90FeKN2O6Si6 (%) C 48.84, H 9.71, N, 3.00; found (%):
C 48.80, H 9.39, N 2.96 %.

Magnetic susceptibility measurements were performed using a Quantum Design
MPMS-XL SQUID magnetometer. A detailed description of the sample preparation
for the magnetic studies is included in the Supplementary Methods. The a.c.
magnetic susceptibility data measurements were performed using a 4 Oe switching
field. All data were corrected for diamagnetic contributions from the eicosane
restraint and core diamagnetism estimated using Pascal’s constants. The a.c.
magnetic relaxation data were fitted using formulae that describe x ′ and x ′′ in terms
of frequency, constant temperature susceptibility (xT), adiabatic susceptibility (xS),
relaxation time (t) and a variable that represents the distribution of relaxation
times (a)3,47. The Mössbauer spectra were measured at 5 and 295 K on a constant
acceleration spectrometer that utilized a room-temperature 57Co in rhodium source
and was calibrated at 295 K with a-iron foil.
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Further characterization, computational and crystallographic details for
compound 1 are described in the Supplementary Methods. Crystallographic data
were collected using a Bruker QUAZAR diffractometer and are deposited in the
Cambridge Structural Database as CCDC 908721 (1).

Received 14 November 2012; accepted 18 March 2013;
published online 5 May 2013
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